
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1317
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Approaches and Tools for Viewing, Browsing and
Querying Semantic Web Data and Ontologies

Tatyana Ivanova

Abstract—Semantic Web is not only a vision, it is the future of the Web, and current Web already includes many well working semantic-based
applications. Semantic Web is mainly for computers to make web more convenient for humans, but many peoples have need in direct usage of semantic
web knowledge. Thus, querying semantic web and visual representation of semantic web knowledge is of great importance. In this paper we make a
brief survey and classification of current semantic web technologies and querying tools. Our main aim is to propose architecture that can support
recommendation and easy integration of the right tools for every type user or purpose among the grand amount of the available well working tools for
knowledge exploration evolution and querying semantic web.

Index Terms—ontology, ontology modelling languages; Semantic Web querying languages; ontology visualization tools; ontology querying tools

—————————— ——————————

1 INTRODUCTION
EMANTIC Web (SW) vision is to make the Web more
convenient for users by facilitating machines to perform
more qualified search and information integration.

Semantic Web relies heavily on the linked data and formal
ontologies that structure web content for the purpose of
comprehensive and transportable machine processing.
Ontologies are used to describe the semantics of web resources
and support machines by proposing needed information in
machine readable and processable formats. Many Semantic
web languages have been developing recently to facilitate
modeling of linked data and semantic representation of
knowledge in various domains. A thousands of ontologies are
stored in ontology libraries, a grand amount of linked data are
accessible through SPARQL endpoints. Several Semantic Web
Querying languages have been developing recently to
facilitate extraction of linked data, metadata and knowledge,
stored in the Web. Unfortunately, the use of this knowledge is
too limited for a number of reasons.

In our work, after the brief analysis of Semantic web
Languages, linked data and ontology querying languages and
tools, we propose a flexible and modular architecture, that
can support ontology visualization, testing, evolution,
querying of linked data and extraction of knowledge from
ontologies for all the type SW users (knowledge professionals,
domain experts, nonprofessionals, software agents).

The paper is structured as follows:
The first section make a brief survey of the most usually

used Semantic Web and Ontology modelling languages, as
querying technologies are in thight dependence of the used
data, metadata and knowledge modeling technologies.

In the second section we make a brief survey of the most
usually used Semantic Web querying languages. The goal of
this survey is to answer the question how to make querying
semantic web data and knowledge more easy for different
type users. As direct usage of querying languages requires
deep understanding of semantic web technologies and skills in
writing queries in many languages, following strict
synthactical rules, graphical querying tools are of great
importance.

In the third section we survey visualization and assistance
tools, used in the process of understanding and querying

Semantic Web by different type users, and conclude that
Semantic Web developers need to have grand variety of
different visualization and querying tools for effective
development and testing of semantic web knowledge and
tools. To satisfy these needs, we propose the integrated
ontology development and querying architecture.

2 ONTOLOGY MODELLING LANGUAGES
There are a grand variety of formalisms, used for data and
knowledge representation in Semantic Web. According to the
underlined models we can classify Semantic Web languages in
three main classes: frame–based, RDF triples–based and Logic-
based languages (Figure 1).

Fig. 1. Classification of Semantic Web languages

Frame-based formalisms, as OIL or DAML are the oldest,
and less frequently used. Frame-based modelling languages
use frames for knowledge representation. They were used for
knowledge modeling in artificial intelligence in 20 century.
Frame-based models are similar to class hierarchies in object-
oriented programming languages, but there are several
differences between the two models: while frames are focused
on explicit and intuitive representation of knowledge, objects
focus is on encapsulation and data hiding. In object-oriented
programming every object is an object of only one class,
whereas in frame–based formalisms one and the same instance

S

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Ontology_Inference_Layer
http://en.wikipedia.org/wiki/DARPA_Agent_Markup_Language

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1318
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

may be the instance of several classes.
RDF (Resource Description Framework) was one of the

oldest Semantic Web languages, developed to represent linked
data in a machine-processable way. It is widely used in the
Web. RDF is based on a tree-like graphical formalism, and
usually is serialized by XML-based syntax. The RDF model
includes hierarchically structured triples (subject, predicate,
Object). RDFS (RDF Schema) extends RDF with a schema
vocabulary that allows users to define basic terms such as
types, classes, properties, ranges, domains, and the relations
between them. RDFS is a simple vocabulary language for
expressing the hierarchical and other semantic relationships
between resources.

OWL (Web Ontology Language) allows users to represent
richer semantics of knowledge in a machine-processable way.
It is the proposed Semantic Web standard for building Web
ontologies. OWL uses RDF and RDF Schema, and extends
them by defining types of relationships, constructions for
compound classes, and several types of properties for
specifying relationships between different resources. It has
strong formal semantics with roots in DL. OWL is RDFS
extension, having stronger syntax and a much richer, more
expressive vocabulary for defining Semantic Web ontologies.
OWL has three sublanguages: OWL Lite, OWL DL and OWL
full. OWL Lite is the simplest OWL sublanguage with
minimal reasoning capabilities and maximal effectiveness. It
usage is easier, and is recommended for logically simple
domains. OWL DL includes OWL Lite and has DL reasoning
capabilities. It realizes decidable restriction of FOL and can
guarantee maximal reasoning power and the decidability at
the same time.

 OWL full includes OWL DL and is union of OWL syntax
and RDFs semantics with no expressiveness constraints.
Unfortunately, it can not guarantee decidability and reasoning
effectiveness is unpredictable.

OWL2 is an revision and extension of the OWL Web
Ontology Language, which adds useful elements to the
current OWL such as property chains, keys, data ranges, and
richer data types. It also has three Profiles: OWL2 RL, OWL2
QL, and OWL2 EL. OWL2 RL is useful for applications that
require scalable reasoning without too much expressive
power, and where query answering is most important. OWL2
EL is useful for applications, using richer hierarchies (grand
number of properties and/or classes); OWL2 QL is useful for
applications with very large amount of instances. There is also
OWL 2 full, having RDFs – based semantics and maximal
reasoning power, which (as OWL full) is undesidable.

There are also many other Semantic Web languages as
SWRL, RIFF, WSML, etc. All these languages are needed
because of the grand variety of knowledge structures and
significant difference in reasoning methods, used in different
real world domains. No one of these languages can replace the
other and be accepted as the only universal Semantic Web
language Two and more of these languages are frequently
used in one and the same project. The different query
languages are needed for querying linked data or ontologies,
represented by different ontology languages. We will survey
Semantic Web querying languages

3 SEMANTIC WEB QUERYING LANGUAGES
Semantic Web querying languages play a central role in
extracting and processing information about the real world
from Linked data and ontologies. As each ontology language
provides different expressive power and computational
complexity for reasoning, and requirements of the semantic
web application, related to knowledge extraction are very
different, various ontology query languages have been
developed to query the information defined by different
ontology languages, and to provide users with the ability to
retrieve various type information from the ontologies. Several
of these query languages are implemented in ontology query
tools and systems.

Semantic Web querying languages can be classified
according to different criteria. We will make a brief analysis of
querying languages according to important criteria such as
underlined semantics, syntax, and purpose. According to the
underlined semantics query languages can be divided into
four main types:

1. Path – based;
2. Based on RDF triples;
3. Based on graphs and;
4. Using logic elements.
According to the type of ontologies, to which query

languages are designed they can be classified as follows
(Fig.2):

1. Languages querying Topic Maps;
2. Languages querying RDF and RDFS documents;
3. Languages querying OWL ontologies;

4. Languages querying databases, based on ontologies.

Fig 2. Classification of Semantic Web querying languages

Topic Map Query Languages are an XML-based extension

of Structured Query Language (SQL). Several such languages
are proposed with four main type underlined models: path-
based languages, SQL-inspired languages (as TMRQL),
functional languages (as AsTMA?), and languages including
logical elements (as Tolog). The main elements of the model of
the path-based languages (such as TMQL, Toma, TMPath) are
nodes and arcs. Typically queries are executed by going
around nodes, using roads, presented by arcs.

One of the most widely used formalism for querying RDF
and RDFS documents is SPARQL (SPARQL Protocol and RDF
Query Language). It is both SPARQL Protocol and family of
RDF Query Languages. Syntactically SPARQL family
languages are SQL-like languages for querying RDF graphs,
based on matching graph patterns. The simplest graph pattern

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1319
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

is the triple pattern, which corresponds to a RDF triple (subject
– predicate - object triple). RDF queries can contain a variable
instead of an RDF term in one of these three positions.

 SPARQL family languages are very good for extracting
RDF data and for queries in a networked, web environment.
The SPARQL drawbacks are its immaturity, the lack of
support for transitive/hierarchical queries, the lack of
reasoning capabilities, and lack of wide standardized
deployment. SPARQL has two main versions: SPARQL 1.0
and SPARQL 1.1.

RDF-based query languages (RDQL, SeRQL, SPARQL) can
also be used to query ontologies, but they are quite hard to
give a semantics w.r.t OWL-DL and at the same time are more
expressive than OWL-DL reasoners can cope with. On the
other hand, query languages based on Description Logics
(RQL, DIG, nRQL) have clearer semantics but are not
powerful enough. More sophisticated query languages, used
in ontology querying, combine direct data and schema
extraction and reasoning over queries, or extracted
components.

SPARQL-DL was introduced in [2] as a subset of SPARQL
with clear OWL-DL based semantics and more expressive
than existing DL query languages and able to be implemented
on top of existing OWL-DL reasoners like Pellet.

 OWL Query Language OWL-QL [3] is a well designed
language for querying over knowledge represented in a
ontology repository. OWL-QL is an updated version of
DAML Query Language (DQL). Results from OWL-QL query
are produced by applying the bindings to the query pattern
and considering the remaining variables in the query pattern
to be existentially quantified. Subontologies also may be
extracted as answers. OWL-QL supports query-answering
dialogues in which the answering agent may use automated
reasoning methods to derive answers to queries, as well as
dialogues in which the knowledge can be used for answering
a query.

There are also some other Semantic Web query languages,
profiles, versions. All these languages are needed because of
the grand variety of Semantic Web languages and low
efficiency of built in query languages reasoning capabilities.
The different query languages are needed for querying linked
data or ontologies, represented by different ontology
languages, or for different needs, related to reasoning over
extracted data and metadata. Many SPARQL endpoints don’t
support complicated features to ensure higher effectiveness.
To ensure good balance between reasoning needs and
efficiency, queering tools should be very flexible. They should
support several query languages, sublanguages, profiles, and
propose easy to use interface, for different type of users, that
hide in the greatest possible extent the syntactic diversity.

4 TOOLS FOR EXTRACTING DATA OR METADATA FROM
SEMANTIC WEB DOCUMENTS
It is clear, that different tools are needed for different type
users, different knowledge representation formats and
different searching tacks. For example, software agents don’t
need any graphical interface, whereas knowledge engineers
need good ontology visualization components. And when
user can extract only stored in the store data, reasoning
capabilities will be useless and would only reduce the

efficiency.
 We will first briefly survey different tools, needed for

querying semantic web documents, and then will discuss how
to select the right tool. In the concept of querying tools we
include not only tools for building query, returning and
showing results, but also tools, storing data or onologues that
provide stored results.

We will classify query management tools according to
important criteria such as target type users, purpose, and
usual location.

According to the target type users query tools can be
divided into two main types:

1. For software agents;
2. For humans.
 And different type of tools are needed for humans, having

different level of understanding of Semantic web technologies
(as knowledge engineers, domain experts, non professional
users), or for different purposes (testing ontologies, extracting
data, metadata, including reasoning).

According to the usual location of querying tools, they can
be divided into two main types: Desktop tools and Web tools
(figure 3).
 Fig. 3. Classification of Semantic Web querying tools

 Desktop tools are components of integrated semantic web

development environments, or highly specialized. Main type
tools are:

1. Visualizers;
2. Querying tools;
3. Components of ontology IDEs for visualization;
4. Components of ontology IDEs for querying;
5. Query processors;
6. Basic query Processors (SPARQL ARQ for Jena);
7. Distributed processors;
8. Tools for domain – specific knowledge visualization or

management.
 Web - based tools may have in some cases similar

purpose, but there are some differences in used underlined
technologies and working mechanisms. Distributed web
technologies for open and insecure environments are used
both for interface building and core functionality. Main type
tools are:

1. User interfaces;
2. Endpoints;
3. SPARQL Processors;

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1320
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

4. Ontology libraries.
Additional tools, as reasoners, language translators, and file

converters can be used as components of every type matured
tools. We will first discuss tools, used by software agents in
semantic web querying.

Agents usually don’t need any visualization of ontologies
or extracted results. If it’s users need some visualization of
ontology or results, the software agent should do it or start
and use some visualization tool.

4.1 Semantic Web Querying and Software Agents
Software agents need specific APIs to query ontologies.
Usually such APIs include class’s methods for creation and
manipulation of ontology models. Using appropriate APIs and
web services, agents have three main approaches to query
ontologies:

1. By sending SPARQL – like queries and processing
returned results;

2. By loading ontologies from ontology libraries and
using his own API to extract needed information;

3. By searching ontologies, loading them and using his
own API to extract needed information.

Ontology query APIs usually are components of some
library for ontology creation and management
programmatically, called Ontology API. There are several
such libraries: OWL2 API, Jena Ontology API, SOQA,
Manchester ontology API, etc. Some ontology query APIs can
work only with ontologies, serialized in specific languages,
and others are language - neutral.

ARC is a simple and flexible API, enabling combination of
the microformats with RDF solutions. ARC includes Parsers
for RDF/XML, Turtle, SPARQL + SPOG, RSS. It can work
with N-Triples, RDF/JSON, RDF/XML, Turtle formats.

Sesame is an open-source framework for analyzing and
querying RDF data. The Sesame Rio (RDF Input/Output)
package contains a Java based API for RDF parsers, writers
and Alibaba, an API for mapping Java classes onto ontologies.
Sesame supports two query languages: SPARQL and SeRQL.

OWL2 API include RDF/XML parser and writer,
OWL/XML parser and writer, OWL Functional Syntax parser
and writer, Turtle parser and writer, KRSS parser, OBO Flat
file format parser, Reasoner interfaces for working with
reasoners such as FaCT++, HermiT, Pellet and Racer.

The Jena Ontology API is directed to RDF and OWL –
based languages and related query languages. It provides a
consistent programming interface for ontology application
development, independent of which ontology language is
used in programs. Jena includes support for a variety of
reasoners through the inference Jena Ontology API, for
example can work with RDFS and all the OWL 1 profiles, but
don’t support OWL 2 profiles.

There is also ontology querying APIs that can query
ontologies in several languages. [1] presents an ontology
language independent Java API SOQA (SIRUP Ontology
Query API). This independence is achieved by using
metamodel, representing modeling capabilities that are
typically supported by several ontology languages to describe
ontologies and their components (concepts, attributes,
methods, relationships, instances, ontology metadata).

Software agents may also use reasoners to enhance
SPARQL–like languages capabilities. Reasoners can be used

in the data store to infer additional triples and store them in
memory before running query, or before the endpoint to
process a data set, and add any inferred triples to the returned
results. Pellet, for example supports the SPARQL-DL format
for querying OWL DL and OWL 2 ontologies. Pellet can be
accessed via three different APIs: the Manchester OWL API,
the internal Pellet API, and the Jena API. The internal API is
the most effective, but is incomplete and has low usability. The
Manchester OWL API is an OWL-oriented API with a wide
range of features for managing ontologies but does not
support SPARQL. Jena is a very popular, rich and stable API
but lacks specific OWL 2 support.

Distributed query processors analyze all triple patterns in a
query, rewrite an initial query in a federated form by using
analyzer results, send result subqueries to appropriate
endpoints of datasets and merge all query results received
from datasets. WoDQA is an example of federated query
based tool and can discover all possible related datasets for a
query and transform initial queries to federated queries which
will be executed over distributed datasets. SPARQLBot is
another web-based service that reads and writes Semantic
Web data. SPARQLBot can process microformats, RSS, several
RDF serializations, and results from parameterized SPARQL
queries.

4.2 Querying Semantic Web by Humans
Semantic Web is mainly for software, but in many cases
humans need to query semantic web data: for example to find
the right source of knowledge or to test the quality of
developed ontology. Different type of users may need to
query semantic web:

1. lay users;
2. Domain – familiar users;
3. Ontology querying professionals.
To do that, every user needs some interface to view the

querying ontology structure, to be assisted in writing complex
queries, to view returned results. Two main classes of
visualization interfaces are used: graphical and form – based.
And graphical representations may be domain – independent
(viewing for example dependencies between classes,
properties, instances) and domain – specific, included some
domain contexts (for example geographical maps).

There are several types of linked data and ontology
extracting or viewing tools:

1. Browsers;
2. Visualization tools;
3. Editors;
4. IDEs and IDE visualization components;
5. Domain-specific visualizing tools;
6. Querying tools;
7. Linked data, ontology and query results visualization

tools.

4.3 Linked Data Browsers
Linked Data Browsers are very useful for viewing the linked
data structure before querying it. Usually the first step in data
understanding by the user is general overview that obtains a
full picture of the data, then searching, filtering and zooming
techniques are used to focus on interesting items. Interactive
interfaces in every one of these steps (graphical, or form-
based), as well as interfaces for viewing of details and statistics

IJSER

http://www.ijser.org/
http://www.musingsfrommars.org/2009/02/snapshot-of-the-semantic-web.html#Microformats
http://en.wikipedia.org/w/index.php?title=SeRQL&action=edit&redlink=1

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1321
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

need to be included in linked data browsers. For information
retrieval from linked data stores Linked Data Browsers
usually use SPARQL queries that are automatically generated
as a result of user interaction via form – based or menu-based
interface.

 There are server side Linked Data Browsers and some web
browser extensions, working on the client side. Some browsers
are oriented to specific domains, but the most are domain –
independent. Example of server-side Linked Data browser is
Disco. Open Link Data Explorer is a Web browser extension,
and a server-side component of the Open Link Ajax Toolkit.
Quick & Dirty RDF Browser and Graphity Browser are
domain – independent RDF and RDFa browsers. DBpedia
Mobile Linked Data browser is suited for lay users and use
DBpedia locations as starting points for exploring the
geospatial Semantic Web. Fenfire Linked Data browser
displays information as a navigatable graph. Another browser,
that use graph representations is IsaViz. Sextant [8] is a tool
that enables the visualization and exploration of the spatial
dimension of linked geospatial data. Sextant enables map
creation and sharing, visualization and exploration of data by
evaluating GeoSPARQL queries on SPARQL endpoints.

Rhizomer (Bereta, Nikolaou, Karpathiotakis, Kyzirakos, &
Koubarakis, 2013) propose capabilities in data overview,
analysis, zoom and filter by easy to use interaction patterns
users are already familiar with but that are automatically
generated from data and ontologies. Users can interactively
explore the data using facets, and combine filters for faceted
views to build complex queries. This new approach makes the
usual form and menu-based interface very flexible, dynamic,
easy to use and suitable for lay users.

4.4 Ontology Visualization Approaches and Tools
The context – based visualization is important for querying, as
it helps the user to be aware of the knowledge structure and
content. Visualization is also needed for making possible
usage of the easy for the user drag and drop mechanism in
query preparation. As results of some type queries are
subontologies of the querying ontology, it is also important to
have a graphical representation of the results.

A grand variety of Semantic Web tools have possibilities to
visualize semantic web content in various contexts. Different
tools can visualize different Semantic Web formats, or use
different visualizing approaches. We will first discuss
ontology visualization approaches, and then

4.4.1 Ontology Visualization Approaches and
Techniques

Using the view-based mechanism, the ontology is loaded and
manipulated in the view, using all the information required to
specify the latest state of the view from combination of the
view configuration, the DL ontology, and the instance store.

Users with different knowledge about ontologies have
different requirements for ontology visualization. Different
views also needed for different tasks, used ontologies. For
example, ontology developer's view should include all the
technical details of concepts and relations, as in contrast for
information searchers the view should be less technical and
provide as much information in natural language. Thus
various visual knowledge representations should be
supported in the ontology browsers, editors or integrated

development environments by providing alternative views to
ontology components depending on the users needs. Users
should switch by the user interface between different
properties or visualization approaches.

The view is a set of related ontology components that map
to more complex constructs in the underlying ontology. It is a
subset specification on an ontology, which allows extracting a
manageable portion of the ontology. Usually the view is a
specification of a sub-graph of the ontology. Generating
“views” over ontologies allows ontologies to be customized
for use within specific application contexts. For editable views,
when entities are manipulated in the view, corresponding
modifications are made automatically in the original ontology.
In the other cases, the view is made only for visualization
purposes.

 Many different views for one and the same ontology may
be used. They differ from each other in used approaches for
selection of components for visualization, and in used
visualization techniques (figure 4). Some of the most popular
view types, based on component restriction approaches are
schema view, property view, hierarchy view, instance view,
Traversal view.
Fig.4. Classification of Ontology visualization approaches and techniques

Traversal View [5] is a view where a user specifies the

central concept or concepts of interest, the relationships to
traverse to find other concepts to include in the view, and the
depth of the traversal. For example, given a large ontology of
computer science, a user may use a Traversal View to extract a
concept of programming languages and approaches that are
related to them. [11] defines the notion of Traversal Views
formally, and shows that if the ontology is consistent, every
Traversal View also represents a consistent ontology. He also
presents a strategy for maintaining the view through ontology
evolution and describes a tool for defining and extracting
Traversal Views.

Another important dimension of visualization includes
used visualization techniques. [14] categorize the most
common ontology visualization and presentation techniques
in six types: Indented list, Node–link and tree, Zoomable,
Space-filling, Focus + context or distortion, and 3D
Information landscapes. The cluster map is a visualization
technique suitable for simple schemas with Instances viewing.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1322
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Cluster maps contain mainly information about the
instantiation of the classes, and show the overlaps between
them. Instances with the same class membership are grouped
in clusters. When subclass relations hold between two classes,
the clusters are connected by a directed edge. Visualization of
the instances and their relationships shows important
information for querying, but in ontologies with a high
number of overlaps too many crossing edges lead to a
cluttered view.

4.4.2 Ontology Editors, Visualization Tools, and
Querying Tools

Ontology editors are useful in ontology visualization, and
some of them have querying capabilities. There is a long list of
ontology editors. We may classify them according to various
dimensions: functional, architectural, usability. Main
differences between editors are related to the degree to which
the editor abstracts from the actual ontology representation
language used for persistence, the visual navigation
possibilities within the knowledge model, integration of the
editors and other tools (for example reasoners and querying
tools), web orientation, publishing mechanisms, underlined
platform and architecture.

General purpose editors are usable in many domains. Some
of them can edit ontologies, serialized in only one language
(for example EMFText OWL2 Manchester Editor can use only
Manchester syntaxes), but most editors support main semantic
Web languages. RDF Gravity (RDF Graph Visualization Tool)
for example is a desktop tool for visualizing directed graphs
stored in RDF and OWL formats. It provides a simple, flexible,
and powerful visualization of RDF graph structures and using
filters to visualize specific fragments of RDF Graphs, it also
supports Full text Search and can execute RDQL queries,
including federation.

 Most of the ontology development environments (as
protégé, OntoStudio, NeOn Toolkit) have component -based
architecture and can include many different visualization and
querying tools. Some of the ontology development
environments focus on the editing and management of
ontologies, while others provide sophisticated features such as
programmatically accessible interfaces, ontology visualization,
querying, collaboration and usage of web services. Solutions,
as KAON, WebOde , and Protégé provide ontology services.
The main problem in these environments is related to the
insufficient relatedness between different views that leads to
the difficulties in its effective usage.

Domain-specific ontology – visualization and editing tools
apart from general purpose visualizing and querying tools
include tools for visualization of specific domain knowledge.
For example, SMART (Semantic web information
Management with automated Reasoning Tool) provide
intuitive tools for life scientists for represent, integrate,
manage and query heterogeneous and distributed biological
knowledge. It uses AJAX, SVG and JSF technologies, RDF,
OWL, SPARQL , DL reasoners (Pellet) for the automated
reasoning.

Web – based Semantic Web tools are built in web portals or
repositories and/or have searching and browsing capabilities.
Web – based tools are mainly dedicated for ontology usage
(searching, browsing, querying, information integration, etc.).
Most tools are very useful for exploring the data offered by a

single SPARQL endpoint, but their functionality for exploring
the linked geospatial data cloud is very limited. The
LODVisualization tool for example [9] is a very promising tool
based on the Linked Data Visualization Model for visualizing
RDF data.

OntoQuery utility [12], is an easy-to-use web-based OWL
query tool with label replacement, syntax highlighting and
checking and auto-complete.

QueryMed [13] is a distributed query engine in the
biomedical domain that can execute queries relevant to a wide
range of biomedical topics, runs federated queries across
multiple SPARQL endpoints, and is designed to be usable by
the users who do not know the structure of the underlying
ontologies or the syntaxes of the SPARQL query language.

Rhizomer [19] is a semantic metadata editor and browser.
For end-users, it proposes web page – based interface and
semantics lay behind and is used to improve the user
experience through an AJAX-enhanced web interface. It offers
a SPARQL endpoint and wiki engine All these components
are built in a powerful platform for Semantic Web portals.

Some of web based tools can visualize ontologies, serialized
in very restricted number of formats (one or two). For
example, OntoVisT is a web based ontological visualization
tool, working with ontology files in OBO format. It is designed
for interactive visualization of any ontological hierarchy,
navigation of complex networks. It also can use search criteria,
zoom in/out, center focus, nearest neighbor highlights and
mouse hover events. There is also web – based ontology
editors, supporting OWL format (web protege for example).

4.5 Visual Querying Tools
Although there are a lot of graphical visualization tools, most
of its visual interfaces are usable for editing, but not for
querying. The form – based querying interfaces rarely are
linked by graphical tools and writing textual queries by
selection of components in corresponding graphical view does
not work. [17] present OntoVQL, a graphical query language
for OWL-DL ontologies, but we couldn’t find implementation
of this language. Authors said it supports the user in
developing syntactically valid queries, but the way of
graphical representation of the query is difficult to understand
by users, which are not familiar with logical knowledge
representation.

The graphical visKWQL language [18] has the full
expressivity of the underlying textual language, and use boxes
for query elements, and relationship between them. It
provides advantages mainly for inexperienced and
intermediate users, as it should motivate those users to
visually construct queries, preventing them from errors and
display features of the system, helping them to create the
queries they want. The main advantage of this visual language
and query builder is that it is usable only with KWQL
language.

NITELIGHT tool supports end users by providing a set of
graphical notations that represent semantic query language
constructs. This language provides a visual query language
counterpart to SPARQL called vSPARQL. NITELIGHT also
provides an interactive graphical editing environment that
combines ontology navigation capabilities with graphical
query visualization techniques. This paper describes the
functionality and user interaction features of the NITELIGHT

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1323
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

tool based on our work to date. We also present details of the
vSPARQL constructs used to support the graphical
representation of SPARQL queries.

4.6 SPARQL Endpoints
SPARQL endpoints are web – based systems, allowing
extraction of data, metadata or subontologies from semantic
web repositories. Using SPARQL language and protocol,
building in endpoints query execution engines analyze,
execute queries and return results, extracted from one or more
sources. SPARQL endpoints have two main components:
server component and client component. Server component
include data store, software libraries and APIs. Client
component include graphical interfaces and tools for easy
query building. Software libraries and APIs have three main
purposes: query analysis, query execution, and federation.

Many SPARQL endpoints use the ARQ library of the Jena
Semantic Web Toolkit for parsing the query. Query patterns
are parsed and mapped into axiom templates. Then they are
passed to a query optimizer, which applies the axiom template
rewriting and then searches for a good query execution plan
based on statistics provided by the used reasoner. Returned
results are presented according to query type, agent needs or
visualization specifics.

NCBO for example is releasing a free and open SPARQL
endpoint to query ontologies hosted in the BioPortal ontology
repository. SPARQL federated queries are managed by Jena
ARQ library. The Jena ARQ library handles the SERVICE
SPARQL construct sets of triple patterns to different endpoint
and handles the joins. SPARQL Federation can be used
programmatically and is of great importance, because of Web
of Data has no global schema, and querying data from
multiple sources could be solved by link establishing among
datasets. There are three federation architectural categories
developed recently [6]: using SPARQL 1.1 Federation
Extensions (ARQ a query engine, Sesame, SPARQL-FED,
SPARQL-DQP), Frameworks build on top of SPARQL 1.0 and
Frameworks build on top of SPARQL 1.1. Federation
frameworks are far from maturity. The challenges that need to
be tackled are related to Data Access and Security, Data
Allocation and freshness, dealing with Overlapping
Terminologies and provenance.

SPARQL endpoints client components usually are SPARQL
web forms, Ajax based Visual Query Builders, Linked Data
interfaces or simply web sites. [7] proposes a question-based
Interface to Ontologies (QuestIO) - a tool for querying
ontologies using unconstrained language-based queries

[4] has investigated enormous SPARQL infrastructure in
the web, including at about 430 endpoints, and concludes that
this infrastructure is not ready for action, because of:

Only one-third of endpoints make descriptive meta-data
available, and it is difficult to locate or learn about the content
and capabilities of others;

The support for established SPARQL features like ORDER
BY and new SPARQL 1.1 features is realized only in small part
of endpoints.

The performance of endpoints for generic queries can vary
by up to 3–4 orders of magnitude.

This leads to the conclusion, that continuous monitoring of
SPARQL endpoints is required.

4.7 Ontology Library Querying and Visualization
Services

 Users need visualization support for understanding of the
used ontologies and machine accessible interfaces for using
ontologies by querying or change information that is up to
date. Implementation of the library interfaces for ontology
usage can be based on: language based API's, HTTP
communication by passing SOAP messages, REST-based
approach, or AJAX-technologies. Ontology library systems
should provide interfaces for both applications and human
users for Searching, Browsing, Programmatic access, querying
and other domain-specific tools(figure 5)

Fig. 5. Classification of ontology library tools

1. Searching
2. Simple keyword-based search mechanism over its

collection of ontologies.
3. Ontology metadata based search
4. Downloading different versions of stored ontologies
5. Browsing:
All users, using an ontology library system require

ontology visualization for gaining a clear perspective to the
ontology as a whole. Browsers should provide navigation of
the ontological relations, searching concepts by semantics or
keywords. The browser should also provide different
abstraction levels to the ontology according to the user group,
because users have different knowledge about ontologies.
Some ontology browsing tools are:

Ontology browsing interfaces as OWLSight
ONKI and Cupboard display a hyperlinked representation

of the entities, which users can navigate.
OLS provides a tree representation of the ontology, which

gives access to the complete description of each of the entities
it contains.

Querying, based on the SPARQL language, reducing the set
of ontologies into the DL-Lite formalism to enable the use of
inferences in real time, during the querying process. Service
for querying is required to enable interaction between an
application and the ontology library system. Therefore a
semantic web query language interface should be provided to
an ontology library system.

Programmatic access
Through Web service protocols, such as SOAP and REST.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1324
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The Web services usually provide access to different types
of content, including search functionalities, extracting
metadata about the ontologies, searching through ontology
content, and query access, such as a SPARQL endpoint.

 Using programmatic access, Web services, for example can
directly query the ARQ query engine for Jena which proposes
flexible support of Standard SPARQL, free text search via
Lucene, Access and extension of the SPARQL algebra, custom
filter functions, Property functions, federated queries.

Other tools, as Versioning, Reasoning, mapping, User
management and Notifications also may be included in
ontology libraries. Such tools can collect valuable for searching
metadata. Mappings and other inter ontology relations are
usually included in ontology libraries. Specific tools, working
with ontology metadata, are also used in many libraries. Such
tools, for example, calculate a number of metrics on an every
ontology when it is uploaded to the library (Noy, & d'Aquin,
2011). The most widely used metrics include simple
quantitative information such as the number of classes,
properties, imported relationships between ontologies, the DL
sublanguage that an OWL DL ontology falls into, number of
classes with no documentation, authors who have contributed
to the ontology, and so on. All these stored metadata about
ontologies are of great importance in ontology searching
process.

ONKI Ontology Service for example includes the
FinnONTO infrastructure containing knowledge and web
services in over than 400 domains, including the ONKI mash-
up widgets. It also includes the notion of creating and
maintaining a Linked Open Ontology Cloud KOKO that
covers different domains, and is provided as a national
centralized service [10].

Another approach to make Semantic Web Querying easy
for all web users is usage of restricted natural language
interfaces for querying. QuestIO system for example [15] aims
to bring the simplicity of Google's search interface to
conceptual retrieval by automatically converting short
conceptual queries into formal ones, which can then be
executed against any semantic repository. Another approach
for developing domain-independent natural language
interface for the Semantic Web is Querix [16], where natural
language ambiguity problem are treated by asking the user for
clarification in case of ambiguities. [20] propose ontology-
anchored integrative query tool, Research-IQ, which employs
a combination of conceptual knowledge engineering and
information retrieval techniques to enable the intuitive
construction of queries.

The systems, based on this approach are far from its
maturity. The quality of returned results heavily depends on
the quality and choice of vocabulary of the ontology, query
clarity, user interaction.

5 THE INTEGRATED ONTOLOGY DEVELOPMENT AND
QUERYING ARCHITECTURE

Our brief analysis of linked data and ontology visualization
and querying tools leads to several important conclusions:

1. There are a grand variety of such tools, and choosing
the right one is not an easy tack;

2. Almost all tools require some competences in Semantic
Web technologies, and are not usable for usual web

users;
3. Almost all visualization tools have no capabilities to

extract and show consistent subontologies;
4. Almost all querying tools are difficult to use by non

professionals in ontology querying;
5. Integrated ontology development and querying

environment doesn’t ensure usage of all ontology
languages, profiles;

6. Many different views may be integrated and used
simultaneously in some IDEs as protégé, but they
usually are not linked to each other;

7. To ensure information integration, querying of aligned
ontologies, or federation querying tools are needed.

As there are some big integrated ontology development
and querying environments but they are far from it maturity
(no one include all needed tools for development and
querying, needed for different level professionals, or for
testing all views and tools, needed for non professionals), the
new modular architecture for ontology building, evaluation
and querying semantic web is needed. The main purpose of
this architecture is to ensure easy usage of all needed for
ontology development, testing (including by mapping and
querying) and evolution tools from one and the same
environment. It also should ensure working with different
ontology formats, including usage of domain – specific
knowledge representation tools.

As it is clear from our brief survey, ontology languages,
ontology visualization and query technologies and tools are
too much to be inserted as components of a single
environment. Therefore it is essential that a integrated
development and querying environment should be highly
configurable and extensible. That is why we present the
modular architecture,

We propose flexible modular and layered architecture that
ensure easy dynamic import and integration only of these
tools, needed for the current project. The main idea is that
only the most frequently used tools should included by
default, and there are a grand variety of tools, that user can
include following the advice of a special tool called
Configuration recommender. All the tools for ontology and
linked data development, publication and querying should be
described by usage of standardized vocabulary (as ontology).
The recommendation system for discovering and choosing the
right tool for specific tack (Configuration recommender) will
use this ontology to recommend to the user the best tool for it
needs in every moment.

The purpose of the layered architecture is to separate
presentation, application logic, web data and extension
software access from each other to enable a clear system
design. Our architecture has three layers: visualization layer,
development layer and web repository layer.
Ontology and linked data visualization layer includes:

1. Ontology hierarchy visualization window (including
several views);

2. Textual query view window;
3. Form – based and/or menu-based query view window

(different forms for different query types);
4. Graphical query results viewer;
5. Textual query results viewer;
6. Restricted natural language query interface window for

non expert users;

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1325
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

7. Domain-specific visualization interfaces;
The main components of ontology and linked data API layer
development layer) are:

8. Application programming interfaces (OWL API, Jena
ARQ, etc.);

9. Reasoners;
10. Converting tools;
11. Ontology Query API for extracting ontology metadata,

as language, logic, etc.;
12. Links to Web repositories;

Components, used in the two layers are:
13. Configuration recommender;
14. Tools ontology.

Fig. 6. The integrated ontology development and querying
architecture

Web repository layer includes web-based linked data,

knowledge, and web-based tools and services (including
cloud- based ones), known and accessible from development
and visualization layers. Some of these tools may be
recommended by the configuration recommender and used in
visualization layer, development layer, or in both layers. Web
tools can be downloaded and included in the development
layer, or directly used from the cloud.

Various APIs, reasoners and language converters (OWL
API, Jena API, sesame and so on) are needed to be easily
accessible for flexible support of usage of different ontology
languages and profiles. All frequently used query languages
and several query engines (as ARQ for Jena, Standard
SPARQL, and extensions of the SPARQL algebra, custom filter
functions, federated queries) also needed to be easily
accessible for easy testing of various query responses.

When ontology developer modifies, or extends ontology, or
proposes mapping between ontologies, it is important that he
can easily predict how the ontology change will affect the
typical query results, or representation in different type views.
That is why it is important for developers to have all needed

for query and ontology visualization tools in it development
environment.

Before starting ontology development from scratch,
knowledge engineers should search ontology libraries for
similar ontologies that may be simplify the development
process. Extraction of schema or instances from Semantic Web
repositories by sending SPARQL queries also is useful as a
variant of reusing knowledge. According to (Buil-Aranda,
Hogan, Umbrich, & Vandenbussche, 2013), a grand number
of SPARQL endpoints frequently are down, or don’t support
some complex query features. That is why SPARQL endpoints
monitoring tool is needed to support Configuration
recommender with the information about the current state of
SPARQL endpoints. The main characteristics of public
SPARQL endpoints are: Discoverability, Interoperability,
efficiency, performance, availability, and support of SPARQL
features like ORDER BY as well as for new SPARQL 1.1
features. Query converters and query mediators use them to
decide how to transform a user query into several sub queries
generates and integrates results from the distributed data
sources, or to make some syntactic query conversion
according to the specific syntactic requirements of the
endpoints.

Sending typical queries is useful in the process of testing
developed ontology or checking effects from mappings
between two or more ontologies. Many different types of
views are needed for making query process easy, simple and
minimize possible errors. Class, property and instance views
are useful when the query should related only to the schema
or instances, focused and transversal views helps in
abstracting from ontology components, not related to the
tested sub ontology of large ontology. And high quality
visualization (including coloring, 3D effects, drag and drop
capabilities, etc.) is very useful when we work with big
ontology. Query Graf view is very useful for visualizing
results of specific type queries as construct queries. And
different users have different preferences related to
visualization techniques. Some professionals prefer to use
form–based interfaces for query formulation, or write queries
directly using SPARQL. And lay users are need for full
automation in query writing (by graphical or menu-based
interface, including search and filtering capabilities). Faceted
or pivot –based views are useful when user should interact
with massive amounts of data. That is who a grand number of
visualization, form-based or text – based views should be
accessible, customizable and easily importable in the
environment.

Query natural language view is important mainly for lay
users, but developers should in some cases test the quality of
the mappings between restricted natural language and specific
query language representation of the every type queries,
expected for the ontology according to it representation
language and underlined logic.

Tools ontology should describe all the tools, useful in the
process of query making, sending, receiving or reasoning
about the results. As there are a grand variety of tools, and
each one can be described, using enormous amount of
concepts and properties, one of the most difficult tacks will be
to select only these tool characteristics that are important for
querying Semantic Web. Axioms, stating what is better in
various situations should also be included. All the knowledge

Language view

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1326
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

should be clearly directed to the strictly specified groups of
users (having similar professional skills and working goals).

Various web – based tools may be recommended from
modern cloud – based services as SMART tools, highly
domain specific as Bioclipse for visualization and working
with biomedical knowledge, to the most general tools as web
protégé. The SPARQL Endpoints Status tool may be accessed
in the internet. It monitors the availability, performance,
interoperability and discoverability of SPARQL Endpoints
registered in Datahub, and may help users in finding of
needed semantic web sources. The system should include he’s
own monitoring tool for monitoring the activity of important
web sites, or searching newly published data, knowledge or
useful tools.

6 CONCLUSION
In this paper the brief analysis and classification of Semantic
Web languages, technologies and tools is made and main
conclusions are that heterogeneity in the semantic web
required to be adequately managed by usage of many highly
specialized tools. At the same time, Semantic Web complexity
must be hidden in different ways and at different levels for
different groups of users.

To ensure exploration, usage and evolution of Semantic
Web Data and knowledge the flexible modular architecture for
development, visualization and querying Semantic Web is
proposed. Our architecture is in some way similar to the other
component – based architectures (as Eclipse for example), but
it differ in usage of Semantic Web technologies for tool
description and the higher level of automation in tool
selection. Our future plans are to develop the prototype of the
Tools ontology and Configuration recommender, and use
protégé and protégé plug-ins to make more flexible and easily
configurable semantic web development, querying and
visualization environment.

REFERENCES
[1] P. Ziegler C., Sturm, and K. R. Dittrich, “Unified Querying of

Ontology Languages with the SIRUP OntologyQuery API”. In BTW
pp. 325-344, 2005.

[2] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL Query for OWL-DL”,
Proc. 3rd OWL Experiences and Directions Workshop., 2007.

[3] R. Fikes, P. Hayes, and I. Horrocks, “OWL-QL—a language for
deductive query answering on the Semantic Web.”, Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 2, no. 1, pp. 19-
29, 2004.

[4] C. Buil-Aranda, A. Hogan, J. Umbrich, and P. Y. Vandenbussche,
“SPARQL Web-Querying Infrastructure: Ready for Action?”, Proc.
Semantic Web–ISWC, pp. 277-293, 2013, Springer Berlin Heidelberg.

[5] N. F. Noy, and M. A. Musen, “ Specifying ontology views by traversal.
Proc. Semantic Web–ISWC, pp. 713-725, 2004.

[6] N. A. Rakhmawati et al., “Querying over Federated SPARQL Endpoints---A
State of the Art Survey.”, DERI Technical Report arXiv preprint
arXiv:1306.1723,2013.

[7] D.Damljanovic, V. Tablan, and K. Bontcheva, “A Text-based Query
Interface to OWL Ontologies.“, In LREC. , 2008.

[8] K. Bereta et al., “SexTant: Visualizing Time-Evolving Linked
Geospatial Data.”, Proc. International Semantic Web Conference, pp.
177-180, 2013.

[9] J.M.B. Ferneandez, S. Auer, R. Garcia, “The linked data visualization
model.”, Proc. International Semantic Web Conference (Posters &
Demos), 2012.

[10] E. Hyvönen, J. Tuominen, M. Alonen and E. Mäkelä, “Linked Data

Finland: A 7-star Model and Platform for Publishing and Re-using
Linked Datasets.” Proc. ESWC, Demo and Poster Papers, 2014.

[11] N. F.Noy and M. d'Aquin, “Where to publish and find ontologies? A
survey of ontology libraries.”, Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 11, 2011.

[12] I.Tudose et al., “OntoQuery: easy-to-use web-based OWL querying.”,
Bioinformatics, vol. 29 no 22, pp. 2955-2957, 2013.

[13] O. Seneviratne, and R. Sealfon, “QueryMed: An Intuitive Federated
SPARQL Query Builder for Biomedical RDF Data.”
http://querymed.googlecode.com/svn-history/r68/trunk/docs/
www2010/paper.pdf, 2010.

[14] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E.
Giannopoulou, “Ontology visualization methods—a survey.”, ACM
Computing Surveys (CSUR), vol. 39, no. 4, 2007.

[15] V. Tablan, D. Damljanovic and K. Bontcheva, “A natural language
query interface to structured information", Springer Berlin Heidelberg.
pp. 361-375, 2008.

[16] E. Kaufmann, A. Bernstein and R. Zumstein, “Querix: A natural
language interface to query ontologies based on clarification
dialogs.” Proc. 5th International Semantic Web Conference (ISWC), pp.
980-981, 2006.

[17] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini, “Visual Query
Systems for Databases: A Survey.”, Journal of Visual Languages and
Computing vol. 8, no. 2, pp. 215-260, 1997.

[18] A. Hartl, “A Visual Rendering of a Semantic Wiki Query Language”,
PhD dissertation, Institute of Computer Science, LMU, Munich, 2009.

[19] J. M. Brunetti, R. García and S. Auer, “From Overview to Facets and
Pivoting for Interactive Exploration of Semantic Web Data.”,
International Journal on Semantic Web and Information Systems (IJSWIS),
vol. 9, no. 1, pp. 1-20, 2013.

[20] T. B. Borlawsky, , Lele, O., & Payne, P. R. “Research-IQ: development
and evaluation of an ontology-anchored integrative query tool.”
Journal of biomedical informatics, vol. 44, pp.56-62, 2011.

 IJSER

http://www.ijser.org/

	1 Introduction
	3 Semantic Web Querying Languages
	4.1 Semantic Web Querying and Software Agents
	4.2 Querying Semantic Web by Humans
	4.3 Linked Data Browsers
	4.4 Ontology Visualization Approaches and Tools
	4.4.1 Ontology Visualization Approaches and Techniques
	4.4.2 Ontology Editors, Visualization Tools, and Querying Tools
	4.5 Visual Querying Tools
	4.6 SPARQL Endpoints
	4.7 Ontology Library Querying and Visualization Services

